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PREFACE

The work described in this report was performed by Physics
International Company for the Defense Nuclear Agency under con-
tract DNAO0Ol1-76-C-0246. The principal investigator at Physics
International was Mr. E., V. Buck, who was assisted by Mr. C.

Felts and Mr. A. York. The project supervisor was Dr. James Shea.

The efforts were coordinated with Dr. A. O. Burford of Lockheed
Missiles and Space Company and Mr. P. G. Underwood of the
Lockheed Palo Alto Research Laboratory. The project monitor was
Mr. Donald Kohler, DNA, SPAS Division.
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3
. SECTION 1
INTRODUCTION

This report describes thermostructural response testing
performed for the Defense Nuclear Agency (DNA), utilizing
pulsed electron beams to induce thermal loads in aluminum rings.
The pulsed electron beawns were generated by the DNA OWL II
Facility at Physics International Company. The aluminum rings
were 2-inches wide, 8 inches in diameter, and 0.121-inch thick.
The primary response data consisted of measurements of dynamic
strain in the circumferential and transverse directions on the
inner surface of the rings.

The objectives of the program were to measure the response
generated in these rings at two thermal loading conditions. The
first condition was pulsed heating just below the level required
to produce permanent deformation of the ring. The second con-
dition was heated substantially above the threshold for permanent
deformation. Data were successfully obtained for both these
conditions and for two additional levels above the threshold for
permanent deformation.

The structural response data collected in this program will
be used by Lockheed Missiles and Space Company (LMSC) for model-
ing studies and comparison with computer code predictions under
Contract DNAOO1-75-C-0175. Lockheed personnel (Dr. A. O. Burford
and P. G. Underwood) participated in the design of the experi-
ments and selection of test conditions. Test specimens were
provided by IMSC as well.

A— e e e



Description of the Experimental Apparatus, Techniques, and
Procedures is presented in Section 2.
are described in Section 3,

The Experimental Results

and the Conclusions and Recommenda-
tions are given in Section 4.
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SECTION 2

EXPERIMENTAL APPARATUS AND TECHWIQUES

2.1 EXPERIMENTAL CONFIGURATION

The OWL II eiectron beam generator was used to produce rapid
thermal loading of the aluminum rings. The accelerator is a
pulse charged system, consisting of an oil immersed, 1/3 MJ Marx
generator and a water-insulated coaxial transmission line pulse
transformer, which provides the pulseforming network (Reference 1).
The accelerator configuration employed for the testing reported
here utilized a 120 nsec pulseforming line, a 1.8 ohm output
impedance transformer, and a 9-inch diameter circular cathode.

The electron beam test geometry is shown schematically in
Figure 1. The electron beam is generated by a field emission
cathode and passes through a transmission anode (0.0005-inch thick
titanium) into the experimental chamber. A graphite aperture
with an 8-inch-inside diameter and a second 0.0005-inch-thick
titanium foil are located just behind the anode. The graphite
absorbed the intense portion of the beam that originates at the
perimeter of the cathode and effectively prevented anode material
from reaching the test specimen. A magnetic lens was used to
control and transport the electron beam from the cathode emission
surface to the target. This produces an electron beam that
retains the cross-sectional shape of the cathode, but the area
of the beam varies inversely with the magnetic lens ratio; hence
the beam fluence is directly proportional to the magnetic lens
ratio. Fluence uniformity is controlled to first order by dish-
ing the cathode to compensate for the bow of the anode produced
by the 1 torr gas pressure in the test chamber.
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The target holder details are shown in Figures 2 and 3.
The rings were clamped rigidly over a 0.5 inch segment (7.2
degrees of arc) centered at the 180 degree position (0 degree
position faces cathode). The clamping apparatus, in turn, was
mounted on an inertial stand bolted to the concrete floor. This
arrangement is necessary to prevent shock waves generated in the
machine from affecting the experiment. A curved calorineter was
mounted on each side of the ring. The central blocks of the
calorimeter on the left side were replaced by a mount for a flat
coupon of the test material. The coupon was instrumented with
a quartz pressure transducer for simultaneous stress-time measure-
ments. The curved calorimeter blocks were one inch wide and each
encoumpassed a 20 degree segment of arc, except f: those im-
mediately adjacent to the quartz gauge, which comprised a 15
degree segment of arc. An arm on one¢ side of the ring specimen
held the light source and a mirror for photographic coverage of
the test specimens.

2.2 ELECTRON BEAM DIAGNOSTICS

Diagnostics used in characterization of the electron beam
were employed both in the diode and at the target location. The
diode diagnostics consisted of a voltage monitor, a set of é
probes, and a set of current monitors. The voltage monitor is
a capacitive voltage divider embedded in the diode insulator. The
B probes are majgnetic field sensors that have an output propor-
tional to the time rate of change of the magnetic field associated
with the diode current. The diode current monitors consist of
Rogowski coil segments that are é probes with built-in integrators
so that the output is directly proportional to diode current.

Four B probes and two Rogowski coil segments were on the anode
plate located on a diameter just inboard of the inside diameter
of the diode insulator. Two full Rogowski coils surrounded the
cathode: one was in the anode plate, and the other was in the
anode extension near the cathode tip.



Figure 2 Target configuration showing aluminum ring with
curved carbon calorimeters on each side. Lights
and mirror are to the right: Quartz gauge in
center of left calorimeter.
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Figure 3

Detail of aluminum ring showing clamp on
right and strain gauge installations.

11
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The diode diagnostics were recorded with fast oscilloscopes
(typically 150 MHz bandwidth). The oscilloscope data were digit-
ized and analyzed on the Physics International Interactive Data
Reduction Facility. The facility includes a digitizing tablet,
a keyboard and graphics display unit, a hard copy unit, a 64K
word mini-computer, and a code which interactively receives,
analyzes, and plots the data. The data analysis includes cor-
rection of the input data for any RC and L/R slumps inherent in
the monitors, calculation of the accelerator voltage, and calcu-
lation of quantities such as the total beam energy and mean
electron energy.

The accelerator voltage, V , was determined from the

acc
equation:
_ dIl
Vace = Vmonitor ~ L &t
or
=V - L x [constant x QE
ac monitor dt
where
Vmonitor is the voltage measured by the voltage

monitor after correction for RC slump
L is the diode inductance
I is the diode current

and the constant is the ratio I/B at the location of the B probe.
The product L x constant was determined by comparing Vmonitor
to the B probe when the cathode was shorted to the anode (i.e.,

12
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The acceleration voltage and diode current wavefor s were
used directly in the PIE1D Monte Carlo Code (Reference 2) to
calculate electron beam energy deposition profiles for correla-

tion with measurements.

The beam diagnostics used at target location consisted of
fluence and deposition profile calorimeters. On data shots the
primary diagnostic used at target location was the peripheral
curved calorimeter array (Figure 2). A complete calorimeter
array, shown in Figure 4, was used for initial fluence mapping
and determining fluence uniformity. The calorimeters are con-
structed of ATJ graphite blocks mounted on fiberglass boards
with aluminum screws. Each block was instrumented with an iron-
constantan thermocouple. The thermocouple signals were recorded
by a scanning digital voltmeter. Fluences were calculated with
a PI mini-computer program, using polynomial fits to handbook

enthalpy curves for ATJ graphite and aluminum,

The electron beam energy deposition profile was investigated
with a graphite foil stack calorimeter, shown in Figure 5. The
foils were 0.020-inch-thick ATJ graphite foils held in position
by polyethylene blocks. The foils were instrumented with iron-
constantan thermocouples, which were clamped against a copper
tab attached to an edge of each foil. The thermocouple signals
were read out with the same scanning digital voltmeter system
described previously. The deposition profiles were calculated
with a PI mini-computer program using polynomial fits to the
enthalpy curves for ATJ graphite and copper.

13



Figure 4 Flat graphite calorimeter. Central blocks are
l-inch square. Peripheral blocks are 2-inch
square.

14



Figure 5 Depth dose calorimeter showing 0.020-inch-
graphite foils and 1.125-inch aperture.



———
)

2.3 STRUCTURAL RESPONSE DIAGNOSTICS

Structural response induced by pulsed electron beam ir-
radiation of the aluminum rings was measured using strain gauges
and high speed motion pictures. The strain gauge data acquisi-
tion system was essentially the same as used during previous ex-
periments on cantilevered beams (Reference 3). The system was
expanded to six channels as part of this program. A block
diagram of one channel of this system is shown in Figure 6. A
schematic of the basic bridge circuit is shown in Figure 7. A
common dc power supply was used to set up and balance each bridge
circuit; individual pulsed power supplies were used during data
collection. Considerable attention was paid to noise reduction.
Double shielding was used wherever possible, with the inner
shield of each channel single-point grounded to the amplifier
chassis. The outer shield, which enclosed all six channels,
extended frcm the ring itself to the electronics rack.

A set of small magnetic field compensation loops located
close to the ring were used to tune out signals induced by the
pulsed magnetic beam guide. These tuning loops were enclosed
in a Faraday cage which was designed to shield the electrical
noise from the electron beam but remain transparent to the mag-
netic beam guide. This is feasible because the relevant fre-
quencies differ by at least five orders of magnitude (hence the
skin depths differ by more than two orders of magnitude).

The recording instrumentation consisted of Preston Model
83C0XWB-B differential amplifiers, a Hewlett-Packard Model
3924B tape recorder, and various oscilloscopes. The bandwidth
of oscilloscope data was limited to about 100 kHz by the Preston
amplifiers and the bandwidth for the tape recorder data was
limited to about 20 kHz by the tape recorder amplifiers.

le
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The strain gauges were located on the inner surface of the
ring at 0, 45, 90, 135, 170, and -45 degrees. (0 degree is
closest to the cathode). All gauges were oriented to measure
circumferential strain, except that on some experiments the
-45 degree gauge was replaced by a transversely oriented gage at
-10 degrees. Each strain gauge package consisted of two gauges,
an active gauge bonded to the cantilevered beam and a passive
gauge mounted directly above the active gauge, mechanically
decoupled from the ring with a styrofoam pad. The passive gauge
comprised one leg of the bridge circuit and served to cancel
spurious signals induced in the active gauge by the pulsed mag-
netic field used to guide the beam and the pulsed electron beam
itself. The gauges directly behind the volume of irradiation
were Micromeasurements Type EAl3 125AV-120 (option B64) strain
gauges; the other gauges were Micromeasurements Type EAl3 125AD-
120 strain gauges. The active elements of both types of gauges
are identical. The difference between the gauges is that the
gauges used behind the volume of irradiation have long foil leads
that allow the solder tabs to be acoustically decoupled from the
ring. This reduces the probability that gauge failure will be
induced by the thermomechanical stress pulse.

Gauges were bonded to the rings with Micromeasurements Type
M-Bond 610 adhesive. The cure cycle employed was approximately
45 minutes warm-up, followed by approximately 60 minutes at
300°F, followed by approximately 45 minutes cool-down.

Mot.ion of the front region of the ring was recorded with a
high wnpeed motion picture system mounted at the rear of the test
chamber. The photographic recsrd was taken with a Red Lakes Lab
Model 1C 2051E "Hycam" operating at a framing rate of about 4000
frames per second. The camera was enclosed by a l-inch-thick
lead box in order to minimize X-ray fogging of the high speed
film.

18



SECTION 3
EXPERIMENTAL RESULTS

3.1 CALORIMETRY DATA

The fluence maps collected on this program are presented
in Appendix A. The data are summarized in Table 1. For the
flat calorimeter, the tabulated average fluence is for the 32
central l-inch-square blocks. The mean square deviation (MSD)
from the average value is included to indicate the degree of
fluence uniformity. For the curved calorimeter, the tabulated
average fluence is the average of the two blocks at the 0 degree
position. Also tabulated in Table 1 are the mean energy per
electron and the total beam energy, calculated from diode
diagnostics, and the cathode to target distance.

The fluence uniformity is shown graphically in Figure 8,
where the calorimeter block (flat array) readings are plotted
for four pulses as a function of the distance from the center
of the array. For the higher fluence levels, some fall-off
is seen at the outer edges, which is due to the fact for these
levels the outmost blocks were only partially illuminated by
the beam. The two outermost sets of blocks extend to 5.4 inches
and 5.6 inches respectively from the center of the array.

In Figure 9 the average fluence, normalized by the total

beam energy, is shown as a function of the cathode to target
distance. Superimposed on the data points is a plot of the

19
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beam guide magnetic field strength, in arbitrary urits, versus
cathode to target distance. The normalized fluence is seen to
follow the field strength quite closely, confirming the results

of an earlier study of this experimental configuration (Refer-
ence 4).

In a previous ring program (Reference 5) it was found that
the fluence over the surface of the ring varied as the cosine
of the angle. In that program the maximum fluence was approxi-
mately 115 cal/cm2 and the beam guide magnetic field was essen-
tially paraxial (i.e., no divergence). Data from the curved
calorimeters are shown in Figure 10 for two of the data pulses.
The predicted fluence and its angular dependence, assuming a
cosine variation, are shown for each pulse in the figure. The
predictions are based upon the calculated diode energies and
include the variation in fluence with distance from the cathode.
The variation for a cosine dependence only is shown for compari-
son purposes for Pulse 2861. Comparing the data to the predic-
tions, it is seen that the observed falloff with angular position
is somewhat greater than the cosine variation. The reason for
this behavior is not presently understood.

The electron beam energy deposition profile measurements
are shown in Appendix B. These data are compared to electron
beam energy deposition profiles calculated from the acceleration
voltage and diode waveforms. The calculations assume normal
incidence and are shown for the diode voltige as measured, and
for the diode voltage increased by a factor ¢f 1.07 which gives
somewhat better agreement. A 7 percent correction to the voltage
calibration of the monitor is not considered to be beyond the
uncertainty limits of the calibration technique. Albedo

22
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suppiossion was not considered for these calculations since only
3 to 4 percent of the incident energy is reflected for this beam
condition. Deposition profile calculations for the ring experi-
ments are presented in Appendix C. These were calculated in the

same manner as for Appendix B.
3.2 STRUCTURAL RESPONSE DATA

The structural response data pulses are summarized in Table
The magnetic tape records have been forwarded to LMSC under sep-
arate cover., The oscilloscope data are presented in Appendix D.
The data are, in general, of excellent quality. Due to the
failure of an oscilloscope channel, the slow sweep rate data for
channel 2 could not be obtained. These data were, however, sub-
sequently recovered from the magnetic tape records. Strain
records were .10t obtained for Pulse 2859 due to a premature

crowbar of the bridge power supplies.

Motion pictures were obtained of all but the three highest
dose level pulses. For these three, the mirror and light fix-
ture had to be removed in order to position the ring close to
the diode. Motion of the ring is clearly discernable in each
of the records obtained. Although primarily intended for quali-
tative information only, the motion picture records provide
confirmation of the trends in the strain gauge reccrds. 1In
particular, the vibrations are seen to damp much more quickly
as the amount of plastic deformation increases. The films
confirmed that no material impacted the test specjimens that

could introduce spurious effects.

The quartz gauge records are presented in Appendix E.
Records were obtained for all except two pulses, 2855 and
2860, for which faulty gauges are suspected. The signals were
very clear and noise free and should provide quantitative infor-

mation on ring loading conditions.
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Measurements of pre-test and post-test ring dimensions are
presented in Table 3. The change in diameter is plotted as a
function of fluence in Figure ll. A threshold fluence for permanent
deformation of about 6 cal/cm2 is clearly appropriate for 1.0 MeVv
electrons. The data suggest that for pulse 2860 the fluence de-
termined from the two 0 degree calorimeters (23 cal/cmz) is
higher than that indicated by the deformation. If the diode
energy is used in conjunction with Figure 9 to estimate the
fluence, the data would shift as shown on the figure.
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aluminum rings produced by irradiation with
1.0 MeV electrons.
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SECTION 4
CONCLUSIONS AND RECOMMENDATIONS

Dynamic strain gauge data and high speed motion pictures
were successfully obtained on 8-inch diameter by 2-inches wide
by 0.121-inch-thick aluminum rings that had been irradiated by
1.0 MeV electrons at fluences from 5 to 24 cal/cmz. Circumferen-
tial strains were measured at six locations on the inner surface
of the rings. Transverse strains were measured in the irradiated
region on some experiments. Measurements of the stress pulse
were obtained concurrently with a quartz pressure transducer
bonded to a coupon of the test material. Electron beam diag-
nostics consisted of diode monitors, flat and curved carbon
calorimeters, and carbon foil dosimeters.

Improvements in experimental techniques have resulted in
good accelerator reliability and an exceptionally high rate of
data recovery. This program has substantially increased the
data base available for correlating analytical predictions of
thermostructural response. With this background it is ap-
propriate to begin investigations of more complex geometries
such as cylinders or frustra, and other materials, such as
fiber-reinforced composites. ir.nce, such experiments are recom-

mended.
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APPENDIX C-1

CALCULATED DEPOSITION PROFILES IN ALUMINUM
NORMAL INCIDENCE
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APPENDIX C-2

CALCULATED DEPOSITION PROFILES IN ALUMINUM
ASSUMING 30° ANGLE OF INCIDENCE AND TUBE
VOLTAGE INCREASED BY 7 PERCENT
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APPENDIX C-3

CALCULATED DEPOSITION PROFILES IN ALUMINUM
ASSUMING 60° ANGLE OF INCIDENCE AND
TUBE VOLTAGE INCREASED BY 7 PERCENT
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APPENDIX D

STRAIN GAUGE RECORDS--OSCILLOSCOPE DATA
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100 ue/division

00

4100 pe/division
100 pusec/division

45°
2150 ue/division
5 msec/division

2140 uc/division
200 ue/division
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Pulse 2853

85

90°
2060 pc/division
5 msec/division

2060 pe/division
100 psec/division

135°
860 pe/division
5 msec/division

850 pe/division
100 usec/division

170°
840 uc/division
5 msec/division

870 pe/division
160 psec/division



Pulse 2855

-45°
2140 upec/division
5 msec/division

2140 pe/division
100 psec/division

00

4100 pe/division
100 uysec/division

45°
2150 upe/division
5 msec/division

2140 upe/division
100 psec/division



e ——

Pulse 2855

90°
2060 uc/division
5 msec/division

2060 pe/division
100 pe/division

135°
860 ue/division
5 msec/division

850 ue/division
100 usec/division

170°
2100 uc/division
5 msec/division

2180 upe/division
100 uysec/division



Pulse 2857

-10° Transverse
4300 pe/division
5 msec/division

4300 pe/division
100 psec/division

0O

4100 pe/division
100 usec/division

45°
2150 pe/division
5 msec/division

2140 pe/division
100 psec/division



S

Pulse

2857

89

90°
2060 pe/division
5 msec/division

2060 pe/division
100 psec/division

135°
860 pc/division
5 msec/division

850 ne/division
100 usec/division

170°
840 pe/division
5 msec/division

870 pe/division
100 usec/division



Pulse 2860

90

-10o Transverse
4300 pe/division
5 msec/division

4300 ue/division
100 usec/division

00

4100 pe/division
100 psec/division

45°
2150 pe/division
5 msec/division

2140 upe/division
100 usec/division



Pulse 2860

91

90°
2060 pe/division
5 msec/division

2060 pe/division
100 usec/division

135°
2160 pe/division
5 msec/division

2120 pe/division
100 pusec/division

170°
2100 pe/division
5 msec/division

2180 pe/division
100 pusec/division



Pulse 2861

-100 Transverse
4300 pe/division
5 msec/division

4300 pe/division
100 usec/division

4100 pe/division
100 usec/division

45°
2150 upe/division
5 msec/division

2140 pe/division
100 pysec/division
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Pulse 2861

93

90°
2060 pc/division
5 msec/division

2060 pe/division
100 psec/division

135°
860 ue/division
5 msec/division

850 pe/division
100 psec/division

170°
840 pe/division
5 msec/division

870 pe/division
100 pusec/division



APPENDIX E
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